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FOREWORD 

The work reported herein was sponsored in part by 
the United States Army Research Office, Durham, under 
Contract No. DA-31-12U-AR0-D-2U6. The study presented 
herein was conducted by Mr. Michael R. Deluca in ful- 
filling the requirements for a thesis in his Master of 
Science program at the Ohio State University. 
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ABSTRACT 

An analytical investigation of the motion of ions in a 
fluid was conducted to provide insight in the use of ions as 
a fluid flow diagnostic tool.    Assuming small space charge 
density, potential fields and flows were considered.   The 
specific cases studied were fine corona wire to a circular 
cylinder.    Both steady and non-steady flows were considered 
and the trajectories of the ions leaving the cornona wire 
were mapped. 
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NOMENCLATURE 

Symbol Definition 

a "Pole", function of (r^r^S) 

Unit vector in ii-direction 

Ci Lift coefficient 

D Diameter of cylinder 

«l Distance from origin to wire 

^ Distance fix» origin to cylinder 

-» 
E Electric field strength 

Ex x-component of E 

% 
■ 

y-component of E 

Lift force 

f,g,h,i,lt,l      Functions 

fSEMiM», 
k',r Dlmenslonless functions 

K Ion mobility 

Ko 

M 

Mobility at original conditions 
KQV 

Dimensionless parameter {^-^ ) r,ij 

P Pressure 

Po Pressure at original conditions 

r Polar coordinate 

ri Corona wire radius 

r? Circular cylinder radius 

s 

ST 

Center spacing between wire and cyl 

Strouhal Number V U / 
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Symbol Definition 

t Time 

f tu 
n 

li Kree stream velocity 

V Corona wire potential 

-» 
Drift velocity of ions 

-» 
Fluid velocity 

-> 
VI Ion velocity 

vix Ion velocity in x-dire 

VlY Ion velocity in y-dire 

x,y 

Complex potential for fluid 

Cartesian coordinates 

»y »• • • Dimensionless lengths (x* = - 

a Angles ions leave corona wire 

7 Angle ions intersect cylinder 

e Pexmittivity 

n Bicylindrical coordinate 

% Value of TJ at corona wire 

Ta Value of Ti at cylinder 

0 Polar coordinate 

% Bicylindrical coordinate 

K Circiilation 

e Vorticity 

p Fluid mass density 

Pe Electric charge density 
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Symbol Definition 

Tp Potential for fluid 

♦F Stream function for fluid 

(j Circular frequency 
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I.  INTRODUCTION 

During the summer of 1968, Dr. Henry Velkoff of the Ohio State 
University performed experiments measuring the ion flow from a corona 
wire to a circular cylinder immersed in a fluid stream at varying 
Reynolds numbers. The experimental data shows oscillations In the Ion 
flow (at approximately the Strouhal frequency) at certain locations on 
the cylinder and non-periodic variation of the current at other loca- 
tions. The intent of the tests -.<as to determine the efficacy of the 
"Ion flow" technique for diagnosis of separation, transition, etc. The 
Intent of this thesis is to analyze the same phenomenon from the stand- 
point of the ion trajectories. 

II. STATEMENT OF PROBLEM 

Consider a circular cylinder of radius (r2) iu a fluid stream of 
velocity (u). Directly upstream of the cylinder is a corona wire of 
radius (r, ), center spacing (s), and potential (V). Hie Ions possess a 
mobility (K) and are leaving the corona wire at an angle (a) and inter- 
secting the cylinder at an angle (7). The problem is complicated by 
the unsteady behavior of the flow and the (possibly) varying mobility. 

Figure 1 - Statement of Problem 
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Tliis work will compute the ion  trajectories, taking into consideration 
the unsteady nature of the flow and the variation in the mobility. 

Ill. ANALYSIS 

Corona Ihenomena 

. 

Corona is the expression used to describe the class of luminous 
phenomena associated with the current jump at a highly stressed elec- 
trode preceding a spark breakdown of the gap. Associated with corona 
is an electrode of small radius. If such an electrode is placed near 
one of low curvature, the electric field induced is extremely high at 
the highly curved electrode. As the potential difference between the 
electrodes is raised, ionizatlon of the air in the Immediate vicinity 
of the highly curved electrode occurs; however, no spark crosses the 
gap because the field is too low farther from the curved electrode. 
The resulting corona discharge will be of positive or negative character 
depending upon the electrode polarity. If the highly curved electrode 
or wire has a negative potential, the positive ions formed near the 
wire acquire relatively hij£i energy from the field and essentially bom- 
bard the cathode wire. These positive ions, while forming a space 
charge near the cathode which gives the negative corona its oscillating 
characteristic, will produce the necessary electrons to sustain the dis- 
charge. The electrons that are formed will travel relatively slowly to 
the anode because of the reduction in field strength away from the wire. 
These electrons will generally not have enough energy to cause further 
ionization and may be expected to attach themselves to neutral molecules 
of electro-negative gases forming large, even slower moving, ions. A 
wire of positive potential will attract the ionized electrons with great 
Intensity causing electron avalanches toward the wire. This frees a 
positive ion space charge which moves toward the cathode sustaining the 
discharge although reducing the field at the wire. The space charge 
present in the region about a corona discharge causes a marked distor- 
tion of the electrostatic field (as Poisson's equation predicts). The 
fact that the highly ionized region constituting the corona envelope 
occupies only a very small volume near the wir*» permits Lhe theoretical, 
deteimlnation of the electric fielxi from Laplace's equation rather than 
from Poisson's equation. (References 2, 8). 

Ü 
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Electric Field Equations 

Appendix 13 consists of an analysis of the electric field between 
two infinitely long conducting cylinders of different radii (^, r^), 
center spacing (S) and electric potential difference (V).    The results 
of this analysis (which assumed zero charge density) are :1 
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»(li-Ta) 
(cosh TJ-COS ög) 

Ex 
_V p \ x(xe-t-yg-a2) iZSä      I 

(TII-^)   ' /[(x^-a2)- + (2ay)2]       [(x-a)2 ♦ y2] i 

x" + y^ + a' _ 1 ( 
(TIi-Tb) W | [(x2

+r-a2)2 + (2ay)2]      [(x-a)2 + y2] \ 
v     ay» 

where 

TJ   e ^7 

(x-a)2 + y2 

Also, 

Tfe « sinh-1/^-^ 

a = ^: [s4-2s (r^r,2) + (ra2-^8)*] 

dx - (a-- r^)1^ 

dg « (a2+ iv)'7- 

The geometrical significance of r] and a is shown in Appendix E. 

The corona wire will be ignored for the determination of the fluid 
velocity field.    This is Justifiable for two reasons:    (l) the neces- 
sarily small diameter of the corona wire, (2) the high electric fields 
in the immediate vicinity of the wire dominates the movement of the 
Ions in that region. 

The diameter of the corona wire in most experiments ranges from 
.0015" to .OOV. 
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Flow Around a Circular Cyllnde-- 
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The motion around a long circular cylinder immersed in a fluid 
stream is Interesting for the variety of changes which occur with an 
increase in the Reynolds number. At a low Reynolds number the effects 
of viscosity are sensible at large distances from the cylinder, in 
particular the fluid at the back is retarded. At higher Reynolds num- 
bers two symnetrical standing vortices are formed at the back. With 
increasing Reynolds numbers these vortices stretch farther and farther 
downstream from the cylinder. Eventually the standing vortices are , 
drawn out to a considerable length, become distorted, and break down. j 
Then develops the characteristic state of flow in which vortices are 
shed alternately and at regular intervals from the sides of the cylinder, 
with vortex trails behind: this type ol flow persists over a large 
range of Reynolds numbers. The asymmetrical arrangement of the vortices 
alters the pressure distribution around the cylinder. The eddying 
motion has a definite frequency for each Reynolds number. Downstream 
the vortices assume what appears to be a regular pattern. The vortices 
arrange themselves in a double row, in which each vortex is opposite 
the mid-point of the interval between two vortices in the opposite row. 
In suitable circumstances the trail of vortices persists for a consider- 
able distance downstream. The vortices actually do not arrange them- 
selves exactly on two parallel rows with a definite spacing ratio. For 
theoretical purposes the system was considered by Von Karman to be com- 
posed of Isolated vortices on two parallel rows. At higher Reynolds 
numbers the vortices diffuse so rapidly after their formation that It 
Is no longer possible to speak of the fo mat ion of a double row. At 
the back of the cylinder, however, vortices continue to be shed with 
regularity until approximately Reynolds number ■ 1.3 x 105. From 
Reynolds number = 1.3 x 105 to 3.5 x 10^ there is loss of the dominant p. 
periodicity (regularity) and there is a wide spectrum of frequencies to j 
contend with. Above 3.5 x 10^ recovery of the pronovmced periodicity ' 
occurs. The range of Reynolds number 1.3 x 105 to 3.5 x Itf3 is called 
the "Critical" and "Post-Critical" regime. Above 3.5 x 108 the regime 
Is termed "Transcritical." The classical description of the critical 
Reynolds number is (roughly): "At subcritical Reynolds numbers the 
separation is laminar, and occurs early, on the front of the cylinder. 
With increasing Reynolds number, transition to turbulence in the bound- 
ary layer moves ahead of the laminar separation point, the now turbulent 
boundary layer can withstand a greater pressure rise, and separation [ 

moves to the rear of the cylinder." Roshko postulates a new classiflca- 
tion: "at subcritical Reynolds numbers the separation is laminar. In ' 
the supercritical range there is a laminar separation bubble followed 
by turbulent separation, and in the transcritical range the separation 
is purely turbulent. (References U, 6, 10, 12) 

J 

J 

J 

D 
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It is well known that there acts on the cylinder an oscillatory pi 

lift force of the same order of magnitude of the mean drag and an oscil- 
latory drag force superposed on the mean value. The oscillatory forces 
possess the same frequency as the shedding vortices (approximately). 
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Practically all the unsteady measurementB in the broad subcritical range 
exhibit more or less raniomly modulated signals at the Stroühal frequency 
whether they represent local values (e.g. local pressures on the cylinder) 
or integrated values (e.g. forces on short sections of the cylinder.) 
Figure 2 shows the results of experiments determining the root mean 
square oscillatory lift coefficient as a function of the Reynolds nvmber. 
(References U, 5, 10). 

In the cases of the motion of water and air the Reynolds numbers are 
very large because of the very low viscosities of these fluids. It is 
reasonable to expect good agreement between experiment and a theory in 
which the influence of viscosity is neglected, i.e. with potential flow 
theory. The pressure distribution according to inviscid flow theory 
around a circular cylinder differs considerably from experiment depending 
on whether the Reynolds number lies in the range of subcritical or super- 
critical — better agreemrnt in the supercritical range. Experimental 
and calculated values sho ' a measure of agreement on the front side, but 
at the rear of the cylinder the differences between experiment and theory 
are very large, and explain the large drag force experienced by a circular 
cylinder. The inviscid flow theory predicts zero drag. Although, gener- 
ally speaking, the theory of inviscid fluids does not give good results 
for drag calculations, the lift can be calculated from it successfully. 
(Reference 13). 

It can be shown that if irrotational flow exists within some portion 
of fluid, then the circulation (<), which is the line integral of the 
velocity vector taken around a closed curve within a fluid region, about 
aay closed curve is zero and remains zero; and the permanence of irrota- 
tional flow is established. In the first instance, flow is irrotational. 
Due to the lack of slip at the boundaries, rotation starts here. Heat 
is imparted to a fluid from a body in the flow in exactly the same manner 
that vortices diffuse into the fluid. For very slow motion, i.e. low 
Reynolds numbers, heat flows out in all directions from the boundary, 
making the flow rotational. For high Reynolds numbers, the only fluid 
heated would be in the narrow layer of fluid surrounding the body and in 
the wake. Similarly, rotational flow is confined to the narrow layer 
ndjacent to the boundary and. to the wake. Therefore, the flow can be 
analyzed by considering the generation of unsteady vorticity in the prox- 
imity of the cylinder and the resulting feedback on the velocity and 
pressure fields near the cylinder. (References 10, 15). 

Consider a cylinder shedding a Von Karman-like vortex trail (Figure 
3). liiere is a time dependent amount of vorticity contained within the 
Curve C since vorticity in the wake is passing through the curve and the 
rate of generation of vorticity is also a function of time. For sub- 
critical and "transcritical" flow the vortex generation is accurately 
periodic. Consequently the amount of vorticity (p,) enclosed in the curve 
can be represented mathematically by 

^ = *0 sin uJt 
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Von Karman Vortex Ti?ii. 

a 
Figure 3 - Cylinder oheddlng Vortices 

where F,o is the maximum vorticity of a single vortex and u is the shed- 
ding frequency. The amount of circulation along the curve is propor- 
tional to the amount of vorticity, hence the circulation (K) IS 

K = KQ  sin ut 

If we require the circulation about the curve Co be zero, ve must 
add -K to K.    This may be done by adding an isolated vortex at the 
center of the cylinder with a vorticity opposite to the vorticity gener- 
ated at the cylinder wall.    Superposing this isolated vortex to poten- 
tial flow around the cylinder enables us to determine the feedback effect 
of the unsteady vorticity generated on the flow upstream of the cylinder. 

Fluid Velocity Analysis 

The complex potential Wp ■ -Uz is for uniform flow with velocity U 
in the positive x-direction.    The complex potential WF = -ur2/(z-zo) is 
for a doublet at point zo with axis in the x-direction.    The superposi- 
tion of the uniform flow upon the doublet yields steady flow around a 
circular cylinder.    The complex potential Wp a -(1K/2TI)^I(Z-ZO) IS for 
circulation K about the point zo in the negative (clockwise direction). 
It can be shown that superposing this potential on the two previous 
potentials still represents flow around a circular cylinder.    The total 
complex potential is then (Reference 15) 

WF = -Uz - iE- - |J 9m (z-zo) 
z-zo      2TT 

To correspord with the notation used in deriving the electric field 
strength components, we will call the radius of the cylinder (r2) and 
the center (zo = c^). Therefore 

_ _      _     ,__      _  .  
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F        .L        z-daJ     2n ^ 

So 

WF = -U I x+ iy . —^—    - —^ (x-dg+iy) 
L X-CI2+ iy J     2TT 

Separating both sides of the equation into real and imaginary parts 
gives 

Vf = -it 
L (x-4,)^r J   2n x^F 

The velocity components are computed by talcing minus the gradient of the 
potential and are 

vw = - M 'Fx = 
r>X -[ 1 + r-, 8

    y-'-Cx-dg) 
[(x-d,)2^ 

^i_l + jLr i 1 

and 

^  = . M - _2Ur,2 [   y^"^)   1 - JL \ ili 1 

It will be found useful to have the velocity at the cylinder sur- 
face for later calculations of the lift force on the cylinder. Expres- 
sing z in polar coordinates, the complex potential is (for cylinder at 
origin) 

-ufr W!.  -nfreiO + li-e"
1« 

I    2n in (rei0) 

vhich may be separated to yield 

T-F 

yiexa 

cos 0 + r- 9 
2TT 

In polar coordinates the velocity components are Vr and Vg. 
Obviously Vr = 0 at the cylinder. The total velocity consists of V0. 

'Ye " r Of \       r2 /  2n r 

8 
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At the cylinder r = r2.    Hence, 

VFo)r3r3 " -KJslnfl   --^ 

Vj^.^-au-ine ♦i£- 
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Ion Trajectory Analysis 

The ions resulting from the high fields of the corona wire cure 
transported from the wire by interaction with the neutral molecules of 

—> 
the fluid which flows with a velocity VF(x,y,t). Uncharged molecules 

-» 
or ions with zero mobility will flow at a velocity of Vp. The ions of 
one sign coming from the wire have associated with than a space charge 
field with an electric charge density pe(y,x) which modifies the elec- 
tric field as: 

divE (x,y) = pe(x,y)/e 

Away from the wire we can assume (because of the extremely low 
charge density) that the space charge density is negligible and 

-» 
divE (x,y) » 0 

The coupling between the fluid and the charges under the influence 

of the field gives rise to a drift velocity VjjCxjy) of the charges 
relative to the fluid. 

VD(x,y) -- KE(x,y) 

where K is the mobility of the ions.    This expression (which is essen- 
tially the definition of mobility) comes from experimental results which 
have shown that the velocity of ions and electrons (in a dense gas) is 
proportional to the applied electric field.    This is true as long as the 
energy gained by the ion is of the order of the thermal energy of gas. 

The resulting transport velocity of the ions V.(x,y,t) is as follows 

VT(x,y,t) = VF(x,y,t) + VD(x,y) 



or 

VI(x,y,t) = VF(x,y,t) ♦ KE(x,y) 

For increased pressure of the gas, the Ion nobility decreases 
(over a large range of pressure) for constant temperature approximately 

K-Kof 

where the subscript (o) denotes the mobility and pressure at "original 
conditions." Therefore 

Vjfr.y.t) = VF(x,y,t) + -^ yW) 

Separating the velocity equation into the components in the x and 
y directions gives 

VIX = Vra + f KoEx 

VIY = VFY + f Kc h 
The trajectories for the ion motion can be calculated from the 

differential equation that results from taking the ratio of the velocity 
conponentSi 

dy 

VIX  g  ^  VFX + 7KoEx 

The solution of this trajectory equation for steady and unsteady 
flow, constant and variable mobility, and for a wide range of the system 
parameters (as will be determined from the dimensionless-sizing of the 
differential equation) constitutes the remainder of this thesis. 

Let 

x' = —, y' ■ -2-, s' = -—, a' » —, etc. 

Then the fluid velocity and electric field components are written 

„f2 f~,   A    i\2 y     - (x'-cb')  f       K    r yf "1 VFX = äJ   j ^  V-d^^Oy^    + 2i^ [W*fr +y'BJ 
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D 
U vw.-2u[ •''(x'-v)   L^-r—±**: ] 

U V .2 ( x'(x'2+y'2-a'2) x'-a' | 

^ = (T],~\)T2        )(x':?+y'?-a'2);1 +  (aa'y')2 ' (x'-a')2 + y,aJ 

.   = V gy ) x'V^a»? 1 j 

*     (\'\)T? I(x'2+y2-a'2)r + (2a«y)2     (x'-a*)2 + y'2) 

The above equations may be writven 

Vpx - U.fCxSySd,') + —-g (xSySV) 
D 

Ü 

ii 

II 

ii 

For Ti <    r?, this pole becomes 

D '-at88-""] 
Also, in general, the distajice from the origin to the center 

*-* of the cylinder is 
dg = S-di = S-{a,2 + rx

s)'A 

So, since a is of the order of V: 

r^ 

vFY = u-h(x«,y',d2') + ~.J (xSySde«) 

Ex = T ^—.K(x',y',a') 
(TJa-Hx )r2 

Ey = ~—-^(xSySa«) 

In general the pole a is 

a = i[s
4.2S'(r1^r2

2) + (r^-r,
2)2]'^ 

de - S-a. 8-i (S2-r2
2) 

which becomes 

0 

Q 

D 

  - ■          ■ i^ 



In the primed coordinates the expresalons for the pole a* and 
<V are 

a« = -i_ [S'1,-1] 
28' 

«V = — [8,a + l] 
23' 

Therefore a* and dg* eure functions solely of the ratio of center 
distance to cylinder radius. Therelore the fluid velocities (that are 
a function of the space coordinates ind cfe'), and the electric field 
strength (which is a function of the space coordinates and a') are all 
functions only of (besides U, V, r2, K, (T^-T^) the space coordinates 
and the ratio of the center distance to the cylinder radius (S*)> 
So 

Vpx = u- f(x',y,s') ♦ -t-g'CxSy'.i') 

VFY = U .h^x'.ySs') 4 —. J'CxSySs«) 

Ex = 

Ey 

(Ta-njrg 

(is -li)^ 

K«(x',y,s') 

r{x',r,*') 

] 
2 

3 

] 
] 

:I 
;i 

:i 

To fully understand the effects of the nonsteady circulation and 
variable mobility on the ion trajectory, three separate cases will be 
studied:    (l) zero circulation, constant mobility; (2) unsteady circula- 
tion, constant mobility; and (3) zero circulation, variable mobility. 
Three separate cases lead to different but similar trajectory differen- 
tial equations. 

For case (1) the trajectory equation becomes 
:i 

dv      flv'      U - h •   ■ ^      . .   1' 
(na-njra 

dx     dx«      U • f • +  2  .  K« 
(n;?-ni)ra 
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Dividing the numerator and denominator by the free stream velocity 
(U) gives 

dy' h'   ,         ^ • «' 
(n2-Tli)r2U 

dx» 
KoV 

f • ♦ -. :  • K« 
(Tio-TiJraU 

Therefore trajectoriee for this case are controlled by the two 
parameters 

S', 
M 

Henceforth the second of these parameters will be designated (M) 

KoV 
M   • 

(ria-ni)r2U 

For case (2) the equation becomes 

dy'      h'+-2- sin (Jt • J'+M • £' 
_ r2U  

dx»      f+^77 sin u)t-g'+M-K' r^u 

Since the time appears in the trajectory equation case (2) becomes the 
problem of solving simultaneous differential... equations, the trajec- 
tory equation being one and either 

dx                   ^o                            KoV — = U . f' + — sin (Jt • g' + -2  
dt r^ (T2-ni)r2 

. K' 

or 

dy KoV — = ü . h' + — sin «.ft • J • + T- 
dt r^ {^-IxJTg 

being the other equation.    Let 

tu     tu 
2r, '    D 
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This leads to 

2 dt'      r,U   V U  / 

and 

2 dt'      r^U    V U  / 

As stated previously u is the shedding frequency. 

Thaief ore 

u 1 

where ST is the Strouhal number.    So 

- ~ = f + -^- sin (2TTSTf) + M . K' 
2 df raU 

and 

- ^Ll = h« + -2- sin (2^£Tt•) • J' + M • 
2 dt» r2U 

Consequently case (2) has four parameters 

^ M* r^J'   ^ 

Finally case (3) has the equation 
po 

dyi  h' + -jr M. ü' 

P 

We must now determine the pressure ratio. For an incomprossible, steady 
flow, the Bernoulli equation is (reference 13) 

fpVF
2
+P = |pU£ + P0 

Therefore 

i. l.iA (i^-V*2) 
2 P. 

11» 

J 
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So 

-L . l-i^-U2(l-f;:-h'-) 
Po 2 Po 

Hence, the trajectory equation becomes 

h' 4   — 

1 

M ,    /t 

dy' "2   jg (1-f 
2-h 2) 

dx' f« •f — M ./' 

l-ff-d-"^-) 

And the variable mobility case is controlled by the three parameters 

S',M, lat 
2   P «   ro 

Case (1) and (3) are ready for solution now, but case (2)  requires a 
determination of the proper amount of circulation for which to solve the 
equations.   As stated previously invlscid flow theory has been relatively 
successful at calculating the lift on bodies inmersed In a viscous fluid 
stream.    For steady circulation, the lift force Is directly proportional 
to the amount of circulation (Streeter).   Mbrkovin, Gerrard and Fung all 
sunnarlze their own and other experiments which determined the lift co- 
efficient (oscillating) on a circular cylinder.    It thus seems reason- 
able to attempt to find the proper amount of circulation from an Inte- 
gration of the pressure about the cylinder and the relation of this 
value to the experimentally determined lift coefficients.    For nonsteady, 
incompressible flow, Bernoulli's equation is (Reference 15) 

vF^ . M + P = F (t) 
dt       p 

where F(t) is an arbitraiy function of time.    We desire to find the lift 
force by integrating at the cylinder,  therefore 

VF = 2U sin 0 + —Z— 
F 271*;? 

and 

fPF _   _ o Ur?cos ip + — 0 
2IT 

qhr = - 2 UTp cos 0 i — <n ein cjt 
2TT 
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Hence, 

■^T" * T" Ko w cos Lit 
ht       2TT    0 

Therefore, 

P « p FrCt) ♦ ^(cos (Jt)() - J (2U sin n i —^2. sin wt)2! 

The force in the y direction is 

r2n 
Py = / Pr, do sinO 

•'o 

Substituting the pressure (P)   into the integral gives 

Fy = p U <0 sin ut + pr2w »<ro cos (Jt 

which can be written 

Fy = p<o 7 U2+ (r2u))2 I sin (cot+7) I 

U 

Again, 

So 

and 

y . tan-1-^- 

u) = 2n sT ^ - n sT ~ 

|Fy| . PKou.r,*(*fy 

|Fy| ■ P^UTTTCTIST)1 

Which is interesting because of the dependence of the oxciUating lift 
force on the Strouhal number.    However fc0 is an unknown quantity and no 
conclusions can be made regarding the variation of the lift force with 
the Strouhal number. 

The lift coefficient is defined by 

Fy 
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Substituting, 

Hence 

rT PX0US'I+ (nsT)? 

^ = \pU?2r, 

CL 

where (4) \r2U/ 

r^U     v/l+ (-nST)5 

is exactly the dimensionless parameter found for case (2) I 

Since CL and Sf are known for a wide range of Reynolds numbers, 
the equivalent amount of circulation required can be calculated. 

A calculation of the drag force for the assumed oscillating circu- 
lation showed this force to again be zero. 

The corona wire was neglected in the fluid velocity analysis 
because of the small diameter and high electric field associated with 
the corona effect.    It is now possible to determine approximately what 
radius wire is required for this assumption to be valid. 

From potential theory, the maximum fluid velocity about any circu- 
lar cylinder occurs at the "shoulder" and is twice the free stream veloc- 
ity. 

If we require that this maximum fluid velocity is less than one 
percent of the drift velocity caused by the action of the electric field 
on the ion, we have a means of calculating ^ . 

Therefore 

| V^ . 2U,   vD   „ K| E I 

VF ma.x 2U 
-> 
Vr K|E| 

0.01 

and 

- a^V 

aho-ii, ) 
(cos hi - cos^g) 

n-8i*h-(f)-^ '(f^ir] 
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'fence for 9^  small, i.e. rj <*<   a. 

and 

CoshTh =l (e^ ♦ e^O = -L 

So we can neglect the cos 0 term in the field strength equation. 

Therefore 

V 

So 

2U 

?Dl       K        V KV £) 
(tia-ni)»! 

Or 

^< .01 S  
r2 SraC^a-^JU 

.005 M 

It was determined that a suitable minimum (for a typical experiment) 
for M is 1/8. Therefore 

rx*  = ^ ^ 6.25 (lO-4) 

In Dr. Velkoff'B experiment, the diameter of the corona wire was 
.0015", the diameter of the cylinder was 6".    This yields an ^ • of 
2.5(10-4) which satisfies the criteria. 
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For case {\),   -ero  circulation and constant mobility, it was 
decided to consider three values of S' (1.5, 2, 3), (Dr. VeUcoff's 
experiment used 1.5), and three values of M (2, 0.5, 0.125), (Dr. 
Velkoff's experiment M was approximately 0.7). The ion trajectories 
(streamlines) for this case are represented in Figures k through 12. 
The most striking feature of these curves is the fact that although the 
trajectories of the ions are greatly altered by variation in the para- 
eter M, the point at which the t1^jectories intersect the large cylin- 
der is not changed very much. This indicates that for a fixed S' 
(Corona wire spacing), the average current reaching the large cylinder 
does not vary significantly with M. Since the variation in M could 
represent a l6-fold increase in the free stream velocity this is a 
significant fact. The current distribution along the cylinder was 
calculated by assuming that the current density around the corona 
wire was uniform. Therefore the current density at the cylinder would 
be proportioned to the ratio of the angle at which the ion leaves the 
corona wire to the angle at which the ion "collides" with the cylinder. 
So 

, T    i /       ^l  an+i "an 
L J  7n-ii -7n 

Where n denotes the trajectory number, J is a dimensionless number pro- 
port ioal to the current density, a is the angle at which the ions depart 
the corona wire, and y  is the angle at which the ions intersect the 
cylinder. Figure 13 through 16 are the results of this calculation and 
show clearly the small effect the variation in M has on the average 
currents and the relatively large effect the variation in the parameter 
S' has on the average current. Indeed, there is only a 1^ percent 
change in the maximum current (at the stagnation point) for the l600 
percent change in M. of course, the corona phenomenon must be considered. 
Since M is directly proportional to the applied voltage, an M variation 
due to voltage variation would undoubtedly produce a different number of 
ions at the corona wire and a subsequent change in the absolute value of 
the overrents at the cylinder. Hence the shape of the current of Figure 
13 through 16 are their only distinguishing feature for voltage varia- 
tions. These curves indicate the currents at the front of the cylinder 
would decrease with a rising free stream velocity. This contradicts 
the experimental evidence from Dr. Velkoff's work. The data from his 
experiment showed an increase in the stagnation point current for an 
increase in free stream velocity. Dr. Velkoff's experiment included 
"field shaping" electrodes at rround potential in the vicinity of the 
corona wire which may account for the difference. Possibly the higher 
drag on the corona wire caused a deflection toward the cylinder which 
increased the current. A rough calculation showed a deflection of 
0.125 inch would be required to account for the rise in current measured. 
This amount of deflection is unlikely. Another possible cause of the 
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"error" is the boundary layer about the cylinder. As can be seen from 
Figures 6 and 12, the trajectories in the vicinity of the stagnation 
point are "turning up" abruptly near the cylinder. If the ions were 
"trapped" in the boundary layer prior to the time they "turned up", the 
low velocities in the boundazy layer would again allow the electric field 
to dominate the ion motion and a smaller (7) would be obtained. 

For case (2), unsteady circulation and constant mobility, it was 
decided to consider one value of S* (2), three values of M (2, 0.5» 
0.125), the maximum value of the oscillating lift coefficient (CL), and 
a Strouhal number of 0.21 (which is the Strouhal number in Dr. Velkoff's 
work.) The maximum lift coefficient was measured by Gerrard and is 
about 1.5 at a Reynolds number of 105. This Reynolds number corresponds 
to the experiment. With a Strouhal of 0.21, the maximum "time" required 
for an ion to reach the cylinder is approximately ^ of a cycle of the 
oscillating circulation. This time is so short that the circulation is 
virtually constant during the whole trajectory. Figures 17, 18, 19 show 
the trajectories for constant positive and constant negative circulation. 
At a fixed elapsed time the extreme values of the ion's angle with 
respect to the cylinder is shown by points A (positive circulation) and 
A' (negative circulation on Figure 1?. The short time required lor the 
ion to reach the cylinder makes the ion currents sensitive to the 
unsteady flow. Consequently it would be expected that the currents 
would be oscillating at the Strouhal frequency and that these currents 
should be measurable. This fact was amply demonstrated in the oscillo- 
scope photographs of Dr. Velkoff's experiment. For purely theoretical 
reasons, it was decided to plot the ion trajectories for the case when 
it requires oie cycle ... of the oscillating circulation for the ion to 
traverse the gap and the case where it takes "many" cycles for a traverse. 
Ulis was done by increasing the Strouhal number to unheard of dimensions. 
These trajectories are shown in Figures 20 and 21. An interesting result 
was obtained when an attempt to find the time dependent current at the 
stagnation point was made. The idea was to "send" a large number of 
ions off the corona wire at fixed time intervals which were much larger 
than the ion traverse time and to count the number of ions which reached 
an "electrode" at the cylinder in each interval. For this calculation, 
S' was 2, M was 0.5, C^ wcs 1.5, and S^ was 0.21. The cycle was broken 
into twelve intervals and Vwenty-six "stations" taken around the corona 
wire to an angle (a) of 30°. This maximum angle was selected by consider- 
ing the minimum intersection angle (7) which was produced by the ion 
trajectory for the appropriate negative circulation. (7) gave the size 
of the electrode (which was approximately O.k  inches for a 6 inch diame- 
ter cylinder). Ions leaving at an angle greater than 30° could not 
intersect with this "electrode." The result of this calculation was 

Time Interval   1   2  3^5   6   7   8   9101112 

ion Count     15  11878111620  23 2k     23  20 
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However, the above count includes only those ions reaching the 
electrode from one side of the corona wire. Since the electrode chosen 
was sysmetrical with regard to the axis» the ions leaving the "bottom" 
of the corona wire are l80 degrees out of phase with the "top." Con- 
sequently, to arrive at the total amount of ions reaching the electrode 
in each interval we must add the totals of time interval (n) with time 
interval (n + 6) (which are 180° out of phase). If this is done all the 
time intervals have 31 ions each! Therefore, a constant current would 
be measured at the stagnation point even though the ion trajectories 
are time varying. Dr. Velkoff't: data shows that although there is some 
variation in the stagnation point current, It is definitely not varying 
at the Strouhal frequency (as so many currents measured elsewhere are). 
An attempt to calculate the ion current at an angle (y) of 5^° proved 
inconclusive. The "sample" was decrtased by one-half because of com- 
puter time limitations. Consequently the total amount of ions reaching 
the "electrode" was not sufficient. However the trend toward a time- 
varying current was seen (as the experimental data shows). 

HI I 
chosen as (0.5, 0.125) and ^-^- took on two values (0.09, 0.33). The 

For case (3), zero circulation and variable mobility, S' was again 
PUf 
PO 

value of 0.09 was chosen because it represents the maximum for air for 
incompressible flow around a cylinder. The  larger value (0.33) was 
chosen because it is a mathematical maximum (approximately). If 
PU2 

5 -rr" is larger than l/3, negative absolute pressures would be obtain- 
able from Bernoulli's equation. The results are plotted in Figures 22, 
23, and 2k.    There is little difference between Figure 22 and Figure 12, 

of which the only difference is the variable mobility with i^jr =0.09. 

Figures 23 and 2k  are interesting but are probably purely speculative, 
, PU2 

since ^"TJJ"  0.33 would lead to compressible flow for air (and probably 

many other fluids). From Figure 23 and 2k  it would seen probable that 
the problem of ion trajectories in compressible flow would be interesting. 

Of all the dimenslonless parameters found in the trajectory analysis, 
KV 

probably the most far reaching one is the number M = •; r . As can 
na-ni^zU 

be seen from a comparison of Figures k through 12, the larger values of 
M are characterized by trajectories which are strongly influenced by the 
electric field. The lower values of M have trajectories which more 
nearly simulate the fluid streamlines. M can be thought of as being the 

KoV 
ratio of r— to U. Therefore, qualitatively, M is the approximate 

(^"'11 )r3 
ratio of the ion velocity due to the electric field to the ion velocity 
due to the fluid velocity field. 
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V. CONCLUSIONS 

Qualitatively at least, this analysis verifies the dependence of 
the ion currents measured at the cylinder on the vortex shedding fre- 
quency (or Ctrouhal number) characteristic of flow about a circular 
cylinder. The feature of the ion trajectories that makes this so is 
the short time required for an ion to traverse the corona wire - cylinder 
gap relative to the period of the vortex shedding. If the period of 
the vortex shedding was «w^n with respect to the ion traverse time, the 
trajectories would vary little and consequently the ion currents would 
not be varying sufficiently to be measurable. Figure 21 shows this 
clearly; especially the longest trajectories. Fortunately Figure 21 is 
hypothetical. 

Probably the most interesting result of this work was the "ion- 
count" calculation at the stagnation point. If anything, it shows pos- 
sible trouble in analyzing the ion currents obtained in experiments. 
This calculation shows the definite periodicity of the ions reaching 
the stagnation point electrode and also the fact that the sum effect of 
the ions is non-periodic. Dr. Velkoff's experiment shows the stagnation 
point current to be randomly varying (and at times constant). It would 
be a false assumption to assume the current* measured at the stagnation 
point are characteristic of stagnation points. There should have been 
a similar periodic behavior at the stagnation point as there was at 
different locations in the front and rear of the cylinder. The periodic 
current would have been manifest at the stagnation point if the corona 
wire was rotated to some angle with respect to the wire - cylinder axis. 

The effect of the variation in ion mobility for incompressible flow 
seems negligible. However, Figures 23 and 2k indicate that ion trajec- 
tories for ccntpressible flow, I.e. larger pressure variations, would be 
very interesting. 

For a given geometry and potential difference the free stream 
velocity has little effect on the average currents at the cylinder. 
This would indicate that oscillations of the free stream velocity would 
not be as measurable as the vortex shedding induced oscillations. This 
situation, i.e. ion currents measuring one oscillation and ignoring 
another oscillation of the flow in the same fluid stream, may be 
beneficial or harmful (it could lead to misinterpretation of the current 
measurements). 

The average ion currents are a relatively sensitive function of the 
spacing of the corona wire relative to the cylinder. 

These currents are even more sensitive than Figure 16 indicates 
since the absolute value of the electric field (and consequent ioniza- 
tion of the fluid) would decrease as the spacing is increased. 
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APPENDIX A 

FIELD THEORY,  POISSON'S AND lAPIACE'S EQUATIONS, 

COMPLEX POTENTIALS AND METRIC COEFFICIENTS 
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Consider a region of space r\,  each point of which Is associated one 
or more numbers representing a physical quantity. The numbers may speci- 
fy temperature, pressure, velocity, electric field strength, etc. These 
values, for one kind of physical quantity, constitute a physical field. 
Therefore, we may speak of a thermal field, a gravitational field, an 
electric field. The mathematical theory of the subject is called fielri 
theory, (pp. 6U-70, Reference 9) 

—♦ 
A point P in euclidean 3-spa2e Is designated by three numbers, which 

may be written (Xi,X2,X3). Suppose there is associated a scalar point 
function with each point in an arbitrary region r\.    This function may 
also be varying with time (t). 

<P = (p(Xv,X2,X3,t) (1) 

The field is then said to be a scalar field. An example is the 
temperature distribution on a body. 

Or suppose there is associated a vector point function with each 
point (and time) in the region T). 

F = F(Xl,X2,X3,t) (2) 

The field Is then said to be a vector field. An example is the 
electric field strength in an electric field. 

The scalar field associated with a point is specified by one number. 
A vector field associated with some point is designated by three numbers, 
FitFajFs. 

P= (PoPa.Fa) 

-> 
where Fi,F2, and F3 are magnitudes of the components of F. Or unit 
vectors may be employed. 

F = aiFi + a2F2 + a3F3 

For any orthogonal coordinate system, the magnitude of the vector 
is 

|p|= [(Fx)2 * (F2)2 + (P3)
2],A 

-» -♦ 
Consider any vector field F (Figure 25). P is enclosed in a small 
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volume ATJ and the total flux of F* through the surface of this volume 
(at a fixed time) Is 

ß / F I cos a dA = • F • dA 

where dA is a vector whose magnitude equals the area dA and whose direc- 
tion is that of the outward-drawn normal to the surface dA,    The angle 
a is between F and dA. 

-» 
A quantity called the divergence of F is defined by the equation, 

$¥.dA 
div F        llm 

Ai) +0 
(3) 

This is a general definition of the divergence which is applicable 
to any coordinate system. 

Equation (3) is another way of writing the Gauss'  theorem. 

j div F dt) = J^F*. dA 00 

when S is the surface that encloses TJ. 

Divergence is a measure of the strength of the source at P. 

Another quantity called the curl of F can be defined by the equa- 
tion (again for a fixed time) 

i F'dS 

curl F      a   lim 
AA->0 AA (5) 

where the plane of C (Figure 26) is so oriented that a maximum value is 
obtained for the integral, and where a*is a unit vector perpendicular 
to this plane.    Equation (5) is related to Stokes' theorem which^asso- 
ciates the surface integral of curl F and the line integral of F: 

/ 
curl F •  dA = * F  •  dS (6) 

Fields may be classified in terms of the divergence and curl. If 

div F - 0 
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Figure 25.    Divergence 

 V 

Figure 26.    Curl 
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of all points in a region, the field is said to be solenoidal in that 
region. This means there are no sources or sinks in that region--every 
line of flux that enters the region also leaves the region. 

If, at every point in the region, 

curl F* 0 

the field is said to be irrotational in that region. 

Consider two fixed points A and B in a vector field, Figure 27. 
The line integral from A to B, along a path 1: 

/ dS 
(AB)! 

may be called the potential cpg at B with respect to A.    Take another 
path 2: 

J(AB)2 

dS 

which may equally well be said to define the potential cpg. Generally, 
the two integrals are not equal, so that cpg will not be a scalar point 
function but will depend also on the path. If the line integral depends 
on the path--no scalar potential exists. 

Figure 27 
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For the case that 

/        F . dS =   |        1? . dS 
J(AB)L J(AB)2 

we can write 

dS = 0 

but 

/ F*« dS  - | f 
AABh -'(AB)a 

| F • dS = - /        F •  dS 
-/(AB). ■'(BA)o 

•Hierefore 

JF • dS +   I 
(AB)L J( 

F*. ig = 0 
Bkh 

or the line integral about a closed path through A and B is 

/F pF • dS = 0 

And it' this is true for any path in the field 

curl F = 0 

at every point. Under these circumstances, a scalar potential cp is 
uniquely defined at any point B in the field. Therefore, the necessary 
and sufficient condition for the existence of a scalar potential cp is 
that 

—> 
curl F - 0 

Therefore, for irrotational field at a fixed time, define 

But 

<f B " «PA 

«PR " TA 

- j F -  (US 

r * ■ - L ¥' dS 

d^   ^7 dx^ ' % dX3 + ^ ^ 
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Therefore 

42- dx ! + |3L dx2 + j^ cbc-H - . Fidxi + Fadxa + F^cbca] 

And, since dxi, dx», and dx;, are Independent of each other, 

jig 
'I » - »? »      i - 1, 2,   3 

or 

F - - grad (j) 

For a solenoidal field 

div F = 0 

Therefore, 

div F =  div(-grad <p) = - div grad <p | 

- div grad q) ^ - v2^ = 0 

For the special case of Cartesian coordinates 

div pVF = 0 

For an incompressible fluid 

or 
p div VF ^ 0 

div Vp = 0 

This may be written in Cartesian coordinates as 

au ^ dv,. aw 
c5x      dy     5z 

= 0 

where U, V, W eure the velocity components In the x, y, and z directions, 
respectively.    This is the continuity equation for incompressible fluids. 

J 
] 

D 
^      cfcc2 + dy2 + dz2 U 

For a flu^d, the flux of mass at a point (per cross-sectional area 
is given by pVp where p is the density and V^, is the velocity at seme •* 
point.    For no sources or sinks the divergence of this quantity is zero. 
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For Irrotational fluids the velocity can be expressed as the nega- 
tive of the gradient of a potential 

VF 

Ü 

- grad {pp 

The Irrotational fluid criteria Is satisfied for Invlscld fluids. 
Therefore, the velocity field of an invlscld fluid can be determined 
from solutions of 

V^' = 0 

(which is called Laplace' s equation) for the desired boundary conditions. 

Gauas'  law for electric fields is (Reference 17) 

i D .  dA = Q 

which asserts that the Integral of the normal component of the electric 
flux density over any closed surface S is equal to the toted electric 
charge enclosed by S. 

By Gauss'  theorem 

J pedTi = i D •  dA ^   j   dlv D^dT) 

so 

dlv D =  pe 

or the divergence of D at any point P* is equal to the charge desnity at 
that point.    For free space 

Pe = 0 

and therefore 

dlv 5*- 0 

For em Isotropie and homogeneous medium 
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ä =» € 

Where E Is the electric field strength and € is the capacitivity (or 
permittivity), 

Faraday's lav for electromagnetic field« is (Reference 17) 

/ dS 3 
5t f B •   dA 

which asserts that the Integral of the tangential component of the 
electric field strength vector around any cloned curve C it equal but 
opposite in sign to the rate of change of the oagnetlc flux passing 
through any surface spanning C. If B (magnetic flux density) la zero 

I E • dS - 0 

and 
curl E = 0 

and the electric field Is irrotational and E   can be expressed as the 
gradient of some potential function cpg 

div D ^ div € E* =  pe 

div i. * — ■ div(-grad 95) 

V2^ -  - - Pe 
€ 

] 
] 
J 
.1 

A 

.i 

.1 

.1 
Ü 

D 

This    equation is known as Poisson' s equation and for p- ^ 0 

Vtq)E= 0 

which again is Laplace's equation. 

Laplace's equation can bf solved In a •lumber of ways, i.e., mathe- 
matical, graphical, and experimental.    The mathematical techniques are 
(1) separation of variables,   (2) function/   of a complex variable,   (3) 
Laplace transform, and (k) numerical approxiiüation ("relaxation" method), 
For this thesis complex variable technique is the predominant way in 
\fhich this equation is solved. 

An infinite number of solutions to the two-dimensional Laplace 
equation are easily obtainable frou functions of a complex variable. 
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Due to the application of complex variable theory, the study of Invlscld 
fluid flow has been preatly expanded. 

When x and y in the complex number z - x + ly (z has been redefined) 
are considered variables, then z Is said to be a complex variable. De- 
fining W as another complex variable such that (W has also been redefined) 
(pp. 7k-TI,  Reference 15). 

W - f(z) = f(x + iy) 

W may be separated into its real oart and its imaginary part, called cp 
and  t, respectively 

W = (p(x,y/ + i'Kx.y) 

vhere (p and * are both real functiors of x,y. 

The function f(z) is said to be a function of a complex variable If 
(l) within some region there is one and only value of f(z) for each value 
of z and that value is finite and (2) the function has a one-valued de- 
rivative at each point within the region. Within this region the func- 
tion is said to be holomorphic, regular, and analytic. 

Further consideration of (2) yields relationships that must be ful- 
filled by a function if it is analytic. A complex derivative 

A£. Um ti* t  5*) - f(z) 
5z -»0 

may approach its limit in an infinite number of ways. The different 
paths by which the limit may be approached are considered. For the first 
path, &z is allowed to approach zero in the x-direction; i.e., let 
&y = 0 first, then take the limit as &x approaches zero. This gives 

lim f(jL+ 5^) - f(2) „  lin ti* + 6*) - f(2) = ai 
5y->0 ftx 6x-»0 8x ^x 

5x->0 

where the last term comes from the second term which is the definition 
of a partial derivative. For the second path, 5z is allowed to approach 
zero in the y-direction by letting &x => 0 first; thus 

f(z ♦ 5z) - f(z) m  1 liB f(z ♦ 5y) - f(z) = 1 of 

&x->o      8x +1 »y     i 5y-o sy       i ^ 
hy-»0 
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Since the derivative rust be the same in either caae if f(z) is a 
function of a complex variable 

However, 

and therefore, 

df = 1 df 
cbc     1 5y 

f(z)  =  W - q  +  it 

öx     (be dx dy      (>y <>y 

Substitution yields 

^+ iMa l(^+ i*l\ 
bx dx      1 \^y dy/ 

Equating the real parts and imaginary parts in each side of the equation 
yields 

(7) 
dx      by dy    dx 

These relations are called the Cauchy-Rlemann equations. They are not 
only necessary but sufficient conditions for the function W(z) to be 
called analytic. 

Differentiating the first of Equations (7) with respect to x and 
the second with respect to y and adding give 

dx2  dy2 

which is the Laplace equation in two-dimensional cartesian coordinates. 
Therefore, by considering qp to be a velocity potential or an electric 
potential, the real part of any function of a complex variable is a pos- 
sible flow field or electric field. 

Similarly, differentiating the first of Equations (7) with respect 
to y and the second with respect to x and subtracting one from the other 

dxs     dy2 

58 

] 

J 
3 
D 
] 
2 
2 
3 

___ 



u 
u 
u 
u 
u 
ll 

ii 

11 
0 
0 
0 
D 
D 
D 
i 
i 
I 
I 

showing that the pure imaginary part of any function of a complex varia- 
ble may also be the velocity or electric potential for a field. Usually 
cp Is considered the potential function, the ^ is called the stream func- 
tion. 

The functions cp, ^ are called conjugate functions; i.e., the real 
part of an analytic function is said to be the conjugate of the imagin- 
ary part. The curves obtained by 

qKxjy) = constant 
*(x»y) ■ constant 

form an orthogonal system in the xy-plane. 

In the solution of Laplace's equation by separation of variables, 
the first step is to transform from Cartesian coordinates to a coordinate 
system that fits the boundary conditions. The work is expedited by hav- 
ing a general method that allows transformations to any coordinate system. 
Such a method is based on metric coefficients (Reference 9)* 

A differential length is expressed in general orthogonal coordinates 
(Xi.XajXs) as 

(dS)a = ai(dxi)2 + g22(dx2)
2 + gaaVtas)2 

where the metric coefficients axe 

- ■ m+m*+m 
where x, y, and z are Cartesian coordinates. 

The expressions in orthogonal coordinates for the gradient, diverg- 
ence and Laplaces1  equation are 

at      ö(p           aa      dm          as      3 m 
grad cp -  7 —:t- +  7 —*- +  -^j —x~ 

(gLi)'^Xi.      (gaaT^xa      (gas)    dx3 

div P ^ g' 

("Xi [gLi ^xij      ^Xa less dxaj     dxa |_g33 ÖX3J ) 

where g = gLi.g23g33 
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APPENDIX B 

ELECTRIC FIELD ANALYSIS FOR TWO PARAIIÜL CYLINDERS 

OF DIFFERENT RADII 
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The electrical field around a line charge with a linear charge 
density q is found by means of Gauss' lav for electric fields (Gauss' 
electric flux theorem), the surface of integration being that of a 
circular cylinder of radius r and unit length coaxial with the line 
charge. If the charge is located at the origin of coordinates In the 
xy-plane, this field is given by (Reference Ik) 

e i 

The corresponding potential may be secured by substituting this field 
into 

E = - grad 9 

and integrating, grad cp in polar coordinates with cp a function of r only 
is 

grad cp 
dr r2 

Therefore 

e r2 dr r 

and 
«P = - J («« r - Äs r0) (8) 

The complex potential function corresponding to a line charge 
located at an arbitrary point Zo may be derived by means of the Cauchy- 
Riemann equations, but It is easily written merely by inspection of 
Equation (8). In polar coordinates 

Z = re is 

And 

inZ » inr + 19 

Clearly from Equation (8), cp is the real part of - q/e On Z,  so 

W = q' +  i\|r = 
€ 

is the desired complex function for a line charge at the origin. It 
follows that a line charge at Zo has the complex potential. (Ref. 11), 

W = - a^ (Z-Zo) 

Preceding page blank 
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The function for n line charges situated at Zu Za, •••, Zn Is therefore 

W= -- £ qg In (Z-Zs) (9) 

Let us superimpose the fields due to charges +G at x = a and -i at 
x » -a. 

This choice of the charge q simplifies the coefficients. From 
Equation (9) the expression for the complex potential becomes 

So 

Therefore 

W - - fe(Z-a) + fo (Z-ta) 

w = 0* 
(Z-a) 

V x - a + iy / iy 

The denominator of the natural logarithm' s argument may be cleared of 
the complex number by multiplying the numerator and denominator by the 
conjugate of the denominator, hence 

Multiplying, 

w . & i£JUL± lY)  .   (x - a - IjO 
(x - a + iy)       (x - a - iy) 

. Jx2 - a2 -H y2 +  llI2Sar)1 
W - T; (x-a)2 + y2 J 

It can be shown that 

Therefore 

Mu •  iv) - Muy + v^) + 1 tan1 J 

w . to V(x- t y2 - a2)^ l  ^5 + i W 
(x-a)2 + y2 

•2ay 
x    - a ^y2 

Now, since 

W = tp +  It 

6U 
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cp = in 
VOc2* y2 - a2)'^ (aay)2 

(x-a)2 + y2 

and 
, -2ay 

* = tan* ^ . ^ + y? 

So 
tan ^ 

2ay 
x'   - a ̂ y2 

Multiplying both sides of the equation by the denominator of the right 
side gives 

(x2 + y2 - a2)tan ♦ - -2ay 

Dividing both sides of the equation by tan t and adding the negative of 
the right side to both sides yields 

or 

x:- + y^ + ^ J   tan ^ 

tan ^ 

- a^ = 0 

= a 

Completing the square and adding to both sides 

7 + Vtan i) ***S*^y*l^) -^(^h) tan ♦ 

Therefore 

x' + y + (^üh)L'^?(1 + üh=) 
But 

cot ♦ = 
tan ♦ 

So 

1 + cot' ♦ = esc »k 

x'' + (y + a cot O2 = a? esc2 ♦ 
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This equation Is a family of circles all passing through the points 
(a,o) and (-a,o) with radii cf 

r,i, ^ 
{sin ty 

and with centers at 

y = - a cot if 

Therefore the lines of constant * (electrical streamlines or lines of 
force) are nonconcentric circles passing through what are called the 
poles at x = + a, y = 0. 

It also can be shown that the lines of constant cp are also non- 
concentric circles. The radii of the equipotential circles are given 
by 

rfp = sinhcp 

The centers are at 
X = a coth cp 

The lines of constant 'i> and constant q form an orthogonal net. Hence, 
a transformation which would be useful for solving multi-cylinder prob- 
lems would be one based on the transformation. 

(z - a) 

If we substitute a coordinate (called r\)  for cp and another coordinate 
(called 9%)  for t, we will have a transformation which will produce a 
solution to Laplace's equation so that the potential cp is only a function 
of T]. To demonstrate this (using metric coefficients) it is first 
necessary to find x and y as functions of r\ and dg. 

So let 

'1 + iÖB in 
(z - a) 

Luckily, 

Therefore, 

1 + u       , Br, = 2 tanh * u 
1 - u 

Ti + iflR - 2 tanh'1 - - 2 coth"1 - 1    D z a a 
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Solving for z. 

Z X    I iy . a ooth (ÜJJSS) 
cosh (- 

LUfB\ 

sinh (^B) 

But 

cosh(u + iv) - cosh u cos v + i sinh u sin v 
sinh(u + iv) = sinh u cos v + i cosh u sin v 

Hence, substituting 

cosh ^ cos Ja + i sinh J sin ^ 
x + iy = a 4 £ §- 

sinh ^ cos — + i cosh ^ sin J 
2 2 2 2 

The denominator can be cleared of the complex number as before, 

x + iy = a 

Multiplying, 

x + iy ^ a 

cosh ^ cos S + i sinh 2 sin |l  sinh ^ cos |l - i cosh J sin £? 

sinh ^ cos 5 + i cosh J3 sin ^  sinh 3 cos ^ - i cosh j sin 22 3 
2 2 

cosh ^ sinh 2 cos'? |l + cosh j sinh j sin2 |l 

sinh2 J cos2 S + cosh2 5 sin2 % 

[sinh   | ^B    9B /cos/ sin ^£ cos ^ - cosh J| sin -ä cos 

9B 9B sinh2 ^ cos2 -^ + cosh2 -3 sin2 
2     2        2     2 

Substituting the relationships 

cos'u + sin2u = 1 

cosh^ - sinh'Ti = 1 

yields 9B 9B 
x = iy = a 

cosh ^ sinh J - i sin / cos / 

cosh2 | - :o8
2 ^ 

67 

..;, . . ^ . ^  --- 



Substituting he relationships 

cosh u slnh u - '. slnh 2u 

cosh'-'u = \  (1 + cosh 2u) 

cos u sin u = •? sin 2a 

cos2u = l, (1 + cos 2u) 

gives 

x + ly 

which factors to 

^ slnh T| - i | sin 9B 

5(1 + cosh TJ) - ^(1 + cos 9B) 

x + ly = a si"h T) - 1 sin 93 
cosh T) - cos 9B 

Equating real and imaginary parts on both sides of the equation gives 

x - a slnh 3 

and 

y = -a 

cosh T) - cos 9B 

sin 9B 

cosh T) - cos 9B 

] 
] 
] 

The minus sign can be dropped since sin(-u) ■ -sin(u) and cos(-u) = 
cos(u) and we can let 9% = -9%  and then redefine 9B. Therefore 

x = a 
sin 

and 

y = a 

cosh T| - cos 9B 

sin 9B 

cosh T) - cos 9 B 

are the desired transformation functions. This trarxsformation Is called 
the blcyllndrlcal transformation. The name Implies the use of this 
transformation for solving two-cylinder problems. The Inverse trans- 
formation functions are 

I " 
V(xg + y

2 - a2)2-»- (2ay)g 

(x-a)2 + Vs 
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11 
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D 
0 
11 
11 
i 
I 
i 
I 
I 

and 

tan .-i -2ay 

x
2 + 3r

! - 

For bicylindrical coordinates, it is convenient to let r) range from 
- oo to + * , which can be done by assigning positive values of TJ to 
cylinders for which x is positive, and negative values of cylinders for 
which x is negative. The parameter dB represents the ^ ngle between 
lines drawn from the poles to a given point. Evidently d-g = n    repre- 
sents a line along the x axis between x = -a and x = a; while dg = 0 
represents the remainder of the x axis. The portions of the cylinders 
(dg = constant) above the x axis are designated by positive values of 
dg, while those below the x axis are designated by negative values of dg. 
The metric coefficients for bicylindrical coordinates are obtained from 
(Appendix Pi) 

6ii UJ) 
Let 

So 

and 

7) = X! , 9B = xa 

^H^y gTl = 

69B = UB) 
+
UB) 

Differentiating, 

(cosh TJ - cos dg}cosh TJ - sinh TJ sinh i\ 

(cosh TJ - cos 9g) 

dy      sin Q-D  sinh TJ 
— = -a  = 
öTJ    (cosh TJ cos 9B)

: 

^      sinh TJ sin 0B 

Ö9B     (cosh TJ - cos 9B)
2 

d9^ 
=  a 

(cosh TJ - cos 9B)co8 9B - sin 9B sin 9B 

(cosh TJ - cos 9B)
2 

69 



Simplifying, 

ix   1 - cos eg cosh Ti 

öT   (cosh T) - cos eg)2 

cosh n cos ög - 1   dx 

B    (cosh TJ - cos öß)2    ÖT) ÜT a 

Therefore 

Also 

] 
] 
D 
D 
0 

m ■ (i; D 

D dy „       d x 
"Srj          äög 

So 

("^/     V>eg/ 

Hence 
«,, - Sog 

Substituting 

fad - 
**    [(cosh 

cos 9g cosh TI)"]2     pa sin 9g sinh TJ 

COS 0g)2    J        L(c08h  T) - cos 9g)2 I 
Factoring and simplifying 

2 1 - 2cos 9g cosh TJ + cos29g cosh TJ + sin29g slnh2 T) g   = a    _  
1 (cosh TJ - cos 9g) 

Substituting 

co829g = 1 - sin29B 

sinh2;) = cosh2T) - 1 

gives 

2 cos'' 9g - 2cos 9g cosh TJ + cosh2  T) 
g   = a            — 

" (cosh T) - cos 9B) 
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Therefore 

«!,- a 
a (cosh T] - cos 9B)g m  af  

(cosh t) - cos 9B)4      (cosh T) - cos 9B)' 

So 

ee*= g 
(cosh T) - cos ög)' 

Also 

And 

ß =   go   gn "    7 
^B 1      (cosh T] - cos 9B)4 

g^   (W5)*=  g 'B^ 11      (cosh T) - cos 9B): 

Generally, the Laplacian is written (as in Appendix A but for two 
dimension) 

(tX Lgii  oxij      dXaLgaa    °XeJ) 

Substituting 

But 

Hence 

g,/j = g. = ß^B 

For our problem 

Vcp = 0 

Therefore, dividing by g"', we are back to Laplace's equation (but 
in the coordinates TJ, 9B) 
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D 
 -1 {(V2 TU -V! Tfe) + (Vx -Va ) T) I 

But we picked T\ and 0^ to force the potential to be a function of i) only. 
So 

äL  =0 

Is the appropriate differential equation, the solution of which it trivial 

q^ = A + BTJ 

Consider two long parallel metal cylinders with radii n and rs and 
potentials Vx and V^, respectively.    They cylinders are on the opposite 
sides of the y-axis.    Designate the two cylinders by TU. and ife.    Then the 
boundary conditions are 

T) =   TL   »     cp = Vl 
t) =   Tfe   ,     qi  =  V2 

Substitution of the boundary conditions leads to 

The electric field strength is 

E* -= - grad (p - - .aT1
V/t * 

(gn)A dTj 

where 

dq _ /Vx - Va \ 

and 

So 

.1 
D 

D 
D 

(gTl)'/j 

cosh T) - cos 9B 

E*^ - arti M —^(cosh TJ-COS QO) 

It will be found useful to have the x and y components of the field 
strength as well 

and 
^ ^ " dx 
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D 
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h-  ' by 
From calculus 

and 

dy     ätjL 3y/x    ^BA ^  L 
But A 

Hence 

and 

Again, 

^1=  0 

_ dip ^n 

Sri (5y 

1 '-' tH j(^ V-^ )'  ♦ (2ay): 

(x-»)z + r 

After simplifications, 

Sa =  [(x-a)-' ■«• y ](x V-a-)2x - [(x'V-a2)S-t- (2ay)-]^x-a) 
dx " [(x'0+y^r ♦ (2ay)'][(x-a)^ + y2] 

du. ^ [(x-a)    -H /Kx-yW ) -  [(x^y^-a^^ ♦ (ggj^ 

V ' [(x^V-a2)'  + (2ay)2] [(x-*)2 ♦ y2] 

The derivatives siii^plify ftirther to 

^a = 2). x +.y; 'a: , ^^  
dx        ([(x-'V -a)    + (gay) ]     [(x-a)3  f r] 
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2ay)2l  [(x-a )2 + y2]) 

So, substituting, and letting V = Vj. - V, 

V _ ^ 2t  x(>rV-a )  _   (x-a 

' " (\-^) * ([(* V-a'^r + (2ay)r]  [(x-a)2 

v
    . (  xr + y  + a 

^ — T^^T'^7  

M ^y2]) 

[(r^y2-.8)2 + (2ay)2] [(x-a)2 + y2] 

«here 

.-i a . TH = slnlT -*- ;       1 . 1,2 rl 
It is now necessary to determine the pole (a) as a function of the 

radii {T\,T^)  and the distance between the centers of the cylinders (S), 
Call the distance from the origin to the cylinder centers di and da. 
Hence (Reference 9) 

In general 

But 

Therefore 

di = a coth TI ,   d^ = a coth rja 

A     - „„♦v.   „ cosh n _ _ (sinh2Ti » iV* d = a coth TI = a . ■—' ■ a ■* . '   ' 1   sinh T)      alhh Ti 

sinh TJ » a/r 

d . a .[(a/r)"' * IT   . (a3+r2)v. 
a/r 

So the spacing S between axes of cylinders is 

S = d> - d! = (a^T + (a2+rf)'/' 

Solving this equation for a gives 

- ^[s4 -2S'-(r?^) + (ri-r02> 
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Knowing that 

Blnh-iu =. «« [u + (u2*!)^] 

The values for tu.,  T^ cam be computed 

m •±*[?:+(^+x)1« 1 = 1'2 

The sign Is determined by the sido  (positive or negative) of the y axis 
the cylinder is located.    This is an arbitrary choice.    Choose cylinder 
No, 1 to be on the negative side and cylinder No, 2 to be on the posi- 
tive.    Then 

(15) 

Hence, given any two cylinders with radii (n, ra)  and center-center 
distance (S),  the electric field components may be computed for any 
position.  (References 1, 9»  H. I'O» 
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APPENDIX C 

NUMERICAL SOLUTION EQUATIONS AND COMPUTER PROGRAM 

Preceding page blank 
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D 

D 
D 
D 
ii 

D 
i; 

All the streamline differential equations (with or without the 
simultaneous velocity equations) were solved using the Runge-Kutta 
third order approximation.     (Reference 17). 

In general, the simultaneous equations, 

g. f(x,y,t)    ,   g=g(x,y,t) 

at intervals Ax - h, can be solved using 

kx - f(xo,yo,to)h 

i\ ' g(xo,yo»to)h 

ks = f(x0 + l/3h,yo + l/3ki,to + l/3ii)h 

4 - g(xo + l/3h,y0 + l/3ki,to + 1/34)h 

k3 -- f(xo + 2/3h,yo + S/akp.to + 2/3/2)h 

Jb - g(xo + 2/3h,yo + 2/3k..,,to + 2/3i2)h 

and then using the formulas 

Ay = J (ki + Ska) 

At - J (A + lU) 

to solve foi  the new point. 

For the steeuiy state cases (l) and (3)» only the ^ equation is 
necessary for solution.    If the various increments are computed in the 
indicated order, each involves only quantities which have been previously 
calculated. 

The error for each calculation is of the order of (Ax)4. 

Considering the longest path an ion would be expected to take and 
allowing the maximum error for this path to be approximately .002, the 
interval for which the equations were solved (AX or ^) wao  .08. 

The program was written so that if the value of the derivative was 
less UtSP one, the interval was taken in the x-direction, and if the 
derivative was greater than one, the interval was taken in the y-direction. 

Preceding page blank 
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This was done to minimize the total error. Also, if the velocity was 
in the positive x or y-dlrecticn the interval was positive and if the 
velocity was in the negative directions the interval was negative. 

List of Program Symbols: 

A = 

B = 

C = 

DN = 

V = 

VI = 

JJ = 

El = 

E2 = 

DM ■ 

P - 

W = 

ADYDX = 

VDC = 

VIY = 

DEUC = 

DEI// = 

ra 

de 

a 

Ko 

V 

u 

ion count 

m 

M 

t 

(t 

dy' 
dx' 

VlX 

VlY 

Ax 

Of 

DD = 

YO 

XO 

dy'   dx' 
= -?«— or -—- 

dx« or dy« 

Yo 

] 
] 
] 
] 

.1 

80 
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Po = to 

Ri - kx 

Rp = Kg 

R3 = ka 

Si = li 

83 = I2 

83 = I3 

RAD = distance from cylinder center to icm 

ANG = 7 

The program included is for case (2), unsteady circulation, con- 
stant nobility. 
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SEXECUTE PUFFT 
SPUFFT        99« 

DIMENSION   JJll«; 
DO  888   N=1.1R 

JJ(N)=U 
ON=1.31 
V«2^.*«lü.»*3.) 
A=6.6666 
B=7,22 
C=2.78 

'SlS" 

16U 

2 
15U 

El«-'».0 1 
E2=.4o6 
0=1780, 

Dvl = V»DN/( (E2-Er)*U»Ar 
WRITE(6»?)DM_ 
FÖRMÄTliJO^tFl o.- 
DO   l-w   J=1.26 
DO   30u   M=l»6 

,4) 

ÜAT(M-1) 
f3.1A16/150.)»FLOArfJ-n 

20 
40 

.Y»U.P)/VIX(XfY.U»P)) 
2Ü.30 
)40»<»0»50 

130 

Ps(.079A/6.)*FL 
«=,6666*3.1416+ 
Y=,l«bIN(w) 

~xi-c»".i»cosT*rj'" 
ADYDX=ADS(VIY(X 
1F(A0YDX-1.)2^. 
IF»VIX(XtY.UtPj 
DELX=-.ofl 
GO   TO   130  

~t>Erx"=.0 8 
DD=VIY(X,Y,ufP)/VIX(X.Y,U»P) 
YO=Y 
XO=X 
PO = P 
R1=DLLX»0D   

"ST=AnS ( DrLX AVTXTX.-Y-rOTP )") 
X=X0+DELX/3. 
Y=Y0*A1/3. 

P = P0 + i>l/3. 
'D0=VlYfX»Y.O,P) 
R2=DELX*DD 
3^«ABSfPECXyvrX 
<=X0+.6665»DtLX 
Y«Y04.6666»R2    ' 
P=P0+.6666«S2 
DD=VIY(X.Y.U»P)/VlX{X.Y»U.P) 
R3 = DELX«iOD_   
S3=Aüc(orLxTVlTi x,Y♦ o7P)T 
X = XO«-DFLX 

8^' 

/VlXIX.YtU.Pj 

fx,-Y.u.pn  

1 
I 
1 
3 

] 
] 
:i 

.i 

.1 

.i 

.i 

D 

. 



L 

Ll 

U 
u 
u 
D 
li 

ii 
ii 
li 

li 
ii 

/ 

3u 

140 

8ü 

—777 
666 

77 
7 

Y»Y0*.25»(R1+3,»R3) 
P«PO+.25*{SU3,»S3) 
GO  TO  flu 
IF (Vj Y (XtY»U>P'))6ü»6üt70 

GO TO   1^0 
DELY«,08 
OD«VIY(X.Y»u»P)/VIX(X»Y.UiP) 
YO»Y 
XO«X 

-PO«P -   
R1»DELY/DD 
Sl.ABS(DFLY/VIY«X,YtU.P))"~ 
Y.YO+OELY/3. 
X»X0+Rl/3»   
P«P0+Sl/3. 

OD=VIY<XfY.u»P)/VIX(X»Y»u.P) 
R2«DELY/D0 
S2«ABI>(DELY/VlY(X,Y»U.Pn 
Y«Y0+.6666»DELY 

-XeX0+,6666*R2  
P«P0+,6666»I»2 
-DD«VIY(XiY.UfP)/VlXrXtYtO>P) 
R3=0ELY/DD 
53»ÄPS(DFLY/VlY(X,Y'tUn:,JT 
Y«Y0+0ELY   
X»XÖ* . 25»IR1 ♦ 3. *Q3 ) 
P«P0+.25»Ji>l + 3.»S3) 
RAD«S(;RT( (X-B)«(X-B)+Y»Y) "' 
IF(X-4.)777»3oÜ»300 
IF (RAD-A) 666 »666 »'6  
ANGaATAN(Y/(B-X)) 

■TFTA HCmTS >'3~0-.T5"5 i"B55  
IF(AMG-,996)A^t<»44»30o  
JJTM) = JJ (M jVr 
CONTINUE 
CONTINUE   '"   ■'  
*RITE(6»77)    (JJ(Kj}tKJ*ltl5) 
FORMAT {10X-f 1 5 14 J  
STOP 
END    —     " 
FUNCTION  mUfVtUtPl 
A«6.6666   
d=7,22 
C«2;78 
El=-4.01 
E2s,406 
DN«1.31 
V=2O.»(10.»»3.) 
Er.X#X4Y«Y-C*C 

I 

i 

83 
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( ((X 

(X-B 

-B) *(X-ß)+Y*Y) 

»Y)) 

FsE»E+^.»C»C*Y»Y *   " 
GMX-OMX-CUV^ Y 
ÜEDX = p.»( (X»E/F)-HX-C)/G) ) 
EX=V»DEDX/(E2-El) 
TPs79.1«P 
VFX = U* l 1 ..♦(A»A)»( Y»Y-<X-n)*(X-B) )/ 
((r-B)«(X-B)*Y»Y) ) ) -•        
♦ 1.5»U»A»Y*bIN< TP)/(6.2832»((X-gj» 
D=DN  "~ 
VIX=VFX+D«E^ 
RETURN "      " '   
END 
FUNCTION   VIYtX.Y.U.P)   
A=6.6666 
0=7.22         —'                     "     - 
C=2.78 

E2=«^06 
ONri.3i  

Vr2O.«(i0.»»3.) 
E«X»X+Y»V-C«C 
F«E»E+A.»C«C»Y»Y 
G»(X-C)»(X-C)+Y»Y 
H=X«X+Y»Y*C»C   
DtDY = r.-»Y4r{ (H/FT-T1T7GTT  
EY«V*DEDY/(E:2-EI)  
TT> = 79. 1»P ' 
VFY=-2.*A*A«U» ( MMMX-EU ) / (_( ( X-B)* ( X-B) »Y*Y 1* ( (X 
• IX'-B)VY»Y) ) ) 

SDAtÄ" 

-1.5«U*A»bIN(TP)«(X-B)/(6.28 32*((X 
D = OH 
VIYsVFYfnxEY 
RETURN 
END  

-Bl 

-B)»(X-B)+Y»Y)) 

8i| 

] 

J 

] 

J 

] 
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APPERDH  D 

ANALYSIS OF ION TBAJBCTORIES FOR 

TWO SIMPLE POTENTIAL FLOW CASES 
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The general method developed In the body of this work may be used 
for any corona wire geometry or flow case (the fluid flow nay be viscous 
or inviscid). To demonstrate the nature of the technique two simple 
cases will be studied. 

The first case has an infinite pow of corona wires opposite to an 
infinite conducting plate, "nie fluid flow is directed perpendicular to 
the plate. 

Figure 28. Infinite Row of Corona Wires 
Opposite Infinite Plate 

The electric field is taken to be constant between the wires and 
the plate. 

V 
Ey = - -, Ey = 0 

The complex potential for this flow is (Reference 1?) 

Wp = (pjr + itp = Az2 

Substituting Z = x + iy and separating the equation into real and imagi- 
nary parts gives 

(pp = A(x2-r), ^F - 2Axy 

The fluid velocities are then 

Preceding page blank 
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and 

v-lr2* 
The ion transport velocity components axe 

Vix - Vpx + K E, 

V^    =     Vpy      .      K    Ey 

and the streamline differential equation is 

^ _ vFy •*• K % 
dx ^ VFx + K E,, 

Hence, substituting, 

Ä. 2Ay .•F 

dx -2Ax 

Let y' = I, x' i, therefore 
h 

dy' 
dx 

KV 
ZAhy' - y 

SAhx' 

Dividing the numerator and denominator by 2^'  gives 
KV 

Ä1- . y'  I 2ÄF 
dx' " x' 

Rearranging, 

dy' 

y 

 dx' 
KV x« 

2Ah: 

Integration yields 

Or 

fa 
\ 2Ah2/ 

♦ *i X*- C 

(-^)x' 

] 

.1 

.! 

] 
;i 

] 
D 
D 
D 
0 
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One dimensionless parameter controls this case. 

KV 
55? 

Note that A Is negative for the flow being studied. If KV 
2Ah* 

negligible compared to unity (the maximum value of y' Is unity), the tra- 

'gl is much greater 

than unity, the equaLj.cn gives x' equal to a constant (the ions are 
travelling perpendicular in straight lines to the plate). 

The second case has two concentric conducting cylinders enclosing 
a potential vortex. 

l/vr/eX 

Figure 29. Two Cylinders Enclosing Vortex 

The electric field for this case is radial and is given by (Refer- 
ence Ik) 

E = Er--ar^i,E0«O 

a 

The complex vortex potential is (Reference 15) 

Zo « 0, hence 

So 

Therefore 

WF = iu.'V(Z-Zo) 

WF « iufti(z) » iuefi(rei0) 

rpp + itpp = luMr)  - u9 

cpp =     uf) 
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The fluid velocity components in polar coordinates are 

Hence, 

Consequently 

and 

'Pfl 
1 ägF bg. 

he ' VFr = -   ör 

vFfl = 7u,VFr = 0 

VTfl = r ^ . Vpfl = - i u 10 dt ¥9 T 

Ir    «     "*     ^Tr 

] 
] 
1 
I 
3 

dr 
dr 

- M _ 

dt 

KV   1 

^ir         KV 
do 

P            a 

Let r* = —, d is already dimensionless 
o 

so 

and 

Integrating, 

which may be written 

b dr: = J2L. brI 

de      „  b 

dr1 KV 
r*     To ^ — u a 

d0 

c^r' = KV 

a 

O + c' 

KV 

r« = c e^äu 
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which is obviously a spiral. This case also has one dimensionless 
parameter 

KV 

8* 

Substituting initial conditions of r' =2: and e = 0 gives 
b 

KV 

r« = 
*.* a  .'^ u 

be  a 

as the trajectory equation. 
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APPENDIX E 

BICILIMDRICAL COORDINATES 

D 
D 
ii 
D 
li 
1 
li 
0 
D 
0 Preceding pace blink 

0 
D 

93 

< 

—  ' 



r-"". -—■ 

'      ■    - -" »■■■>» 11    ..II ;t«pn»ii   ■■!"»■     )■.. ununmii] IM ii i   i    ,i i -1....JV...J. »TTn^^pjp, 

y 

0**0 

&= Co>tST*-.'f 

#4 TCW 

Figure 30. Blcyllndrical Coordinates. The lines TJ - constant are 
circles with axes on the x-axis. The lines do ■ constant 
are portions of circles with axes on the y axis. 
(Reference 9)• 
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APPENDIX F 

A FLUID-ELECTRICAL STREAM FUNCTION 
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All the trajectory analyses vmdertaken In this work have been 
primarily the solution of the differential equation 

dx 
VFy + ^-gy 

VFx + KEx 

Another method of detentinlng the ion trajectories for steady fl->w 
which will lead to closed solutdons is simply adding the stream function 
of the fluid flow (^p) to the product of the mobility times the stream 
function of the electric il field (\|fE).    This sum yields a combined 
fluid-electrical stream function UFE) ^1°^ ^y 'then be solved for the 
trajectories. 

♦FE = ^F + **, 

In general, I would state that this method is valid for steady 
state, constant mobility ion flow problems. 
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APPENDIX G 

ABSTRACT OF EXPERIMENTAL TESTS OF FLUID FLOW DIAGNOSTICS 

USING ELECTROSTATIC CHARGES 
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Studies were Initiated into the possible use of charged particles 
in a gas stream as a means of studying the nature of gas flow. Two 
basic approaches were followed. In one case, Ions were generated elec- 
trostatically by means of a corona discharge from a suitable point or 
line source. In ehe second case, the charges were obtained either from 
the natural dust or water particles in the air, or dust particles were 
deliberately added to the air stream. The charges were collected at 
selected position:: downstream on the particular aerodynamic shape being 
studied. 
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Experimental Study With Ions 

Three configurations have been studied. They Include a slx-lnch- 
dlameter cylinder mounted transverse to the air stream, a three-foot- 
long sharp-edged flat plate, and an MCA 0012 airfoil of 0.216 m chord 
length, all of which were mounted in the U, S. Army AMRDL 7 x 10 tunnel 
at Ames Research Center and tested at various tunnel speeds. Most of 
the runs were made using a O.OO38 cm diameter corona wire placed a few 
centimeters upstream of the surface. Electric field shaping electrodes 
adjacent to the wire were grounded. Strips of aluminum 1.23 cm wide, 
foil spaced at 0.32 cm were mounted on each surface. An end view of 
one configuration is shown in Figure 31. The filter is used to elimi- 
nate background 60 Hz noise. 

"•itetoia 

High 
Voltage 

Pigure 31.  Ion-Flow Measurement Scheme 
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The corona currents ranged from 2 nA to 30 jiA and the applied 
potential used to get the corona rangod from 6 to 16 kV which depended 
mainly on the configuration of the electrodes. Essentially the same 
results were achieved regardless of the currents used. 

Figure 32 shows a typical oscilloscope trace using the cylinder 
at a tunnel q of one. The upper traces axe taken from the resistor 
connected to the most forward position on the cylinder and the lower 
grace Is from the most aft position. The regularity of the upper traces 
indicates that the ion currents tend to follow the basic oscillating 
flow about a cylinder in cross flow. Such flow oscillations are the 
result of the periodic shedding of vortices from a cylinder. At the 
rear of the cylinder the flow has largely separated and close to the 
cylinder is essentially a "dead-water" region. Examination of the lower 
trace reveals that the current oscillation is reduced greatly or elimi- 
nated. The frequency of the oscillation is 16 Hz which is of the correct 
order for the Strouhal frequency for this cylinder. Thus, the ion tech- 
nique in this case seems to respond properly to the characteristics of 
the flow field. 

Figure 32. Circular Cylinder Trace 
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Next, a flat plate was placed directly aft of the cylinder at the 
center line and extended 0.46 m rearward. Such surfaces act to eliminate 
or reduce the periodic shedding. Figure 33 shows the results using the 
ion technique. The upper trace is from the front of the cylinder and it 
can he seen that the ion technique indeed does show greatly reduced 
oscillation. 

Figure 33. Circular Cylinder With Aft Plate 

The three-foot-long sharp-edged flat plate was mounted in the 
tunnel parallel to the windstream. The electrodes were located on 
the upper surface. The top trace of Figure 3^ illustrates em oscilla- 
tion in flow 0.10 m aft of the leading edge. These oscillations may 
indicate the presence of a separation bubble near the leading edge. 
The next trace from a position 3«8 cm aft of the first trace, although 
it shows excursions, does not show oscillations. The lowest trace 
further back on the plate shows a relatively smooth appearance. The 
ion technique seems to give a proper indication of the flow for this 
case. 
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Figure 31*. Sharp-Edged Flat Plate 

Tests ne.vt were run on the airfoil using the corona wire and field- 
shaping electrodes. Current collecting strips were located over the 
entire airfoil. At a tunnel q of one (8.2 m/sec) and an angle of attack 
of 0°, all the traces from positions around the airfoil were smooth and 
regular except at one location. The upper trace of Figure 35 is 10.8 cm 
from the nose of the airfoil. The next two traces are 1.6 cm and 3.2 cm 
further back on the 0.216 m chord airfoil. It can readily be seen that 
a significant oscillation exists within a limited region on the airfoil, 
indicating the presence of a separation zone. Thus, the ion technique 
appears to be able to discriminate local phenomenon. All the foregoing 
ion-flow tests were taken with a filter setting which filtered out fre- 
quencies about 30 Hz. This is the reason why no high frequency oscilla- 
tions appear in the data. 

Another test using the airfoil set at an angle of attack of 17° and 
a tunnel q of 10 (V = 26 m/sec) was i n with the filter set to pass fre- 
quencies in the 150-2000 Hz range. vigure 36 illustrates violent oscilla- 
tions of the ion currents at two pot, tions near the midchord region of 
the upper surface. This action is expected since the airfoil is in full 
stall. The lower surface traces show relatively random behavior with 
peak amplitudes of approximately 1-% of the upper surface trace ampli- 
tudes. 
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Figure 35. Airfoil at 0° Angle 

Figure 36. Airfoil at ir Angle 
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Charged lartlcleB Tests 

nie next phase consisted of using the charged particles carried In 
the wind tunnel stream as the source of charge.    The conflgoration used 
was the cylinder with the rear splitter plate.    The electrode at the rear 
edge of the plate was monitored.    Large oscillations can be noted from 
the trace In Figure 37.    The flow In this region contains large scale 
turbulence and such large scale oscillations are expected.   If corona 
currents are used with this test configuration, similar oscillations are 
seen but their magnitude is several times greater. 

Figure 37.    Charged Particle Traces 
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